广告位联系
返回顶部
分享到

ConcurrentHashMap: 红黑树的代理类(TreeBin)

java 来源:转载 作者:秩名 发布时间:2021-06-11 11:53:06 人浏览
摘要

本片我们来分析一下TreeBin 红黑树代理节点的源码: 1、TreeBin内部类分析 TreeBin是红黑树的代理,对红黑树不太了解的,可以参考: static final class TreeBinK,V extends NodeK,V { // 红黑树根节点 TreeNodeK,V root; // 链表的头节点 volatile TreeNode

本片我们来分析一下TreeBin 红黑树代理节点的源码:

1、TreeBin内部类分析

TreeBin是红黑树的代理,对红黑树不太了解的,可以参考:

static final class TreeBin<K,V> extends Node<K,V> {
    // 红黑树根节点
    TreeNode<K,V> root;
    // 链表的头节点
    volatile TreeNode<K,V> first;
    // 等待者线程(当前lockState是读锁状态)
    volatile Thread waiter;
    /**
     * 锁的状态:
     * 1.写锁状态 写是独占状态,以散列表来看,真正进入到TreeBin中的写线程 同一时刻只能有一个线程。 
     * 2.读锁状态 读锁是共享,同一时刻可以有多个线程 同时进入到 TreeBin对象中获取数据。 每一个线程 都会给 lockStat + 4
     * 3.等待者状态(写线程在等待),当TreeBin中有读线程目前正在读取数据时,写线程无法修改数据,那么就将lockState的最低2位设置为 0b 10 :即,换算成十进制就是WAITER = 2;
     */
    volatile int lockState;
    // values for lockState(lockstate的值)
    static final int WRITER = 1; // set while holding write lock 写锁状态
    static final int WAITER = 2; // set when waiting for write lock 等待者状态(写线程在等待)
    static final int READER = 4; // increment value for setting read lock 读锁状态
    /**
     * TreeBin构造方法:
     */
    TreeBin(TreeNode<K,V> b) {
        // 设置当前节点hash为-2 表示此节点是TreeBin节点
        super(TREEBIN, null, null, null);
        // 使用first 引用 treeNode链表
        this.first = b;
        // r 红黑树的根节点引用
        TreeNode<K,V> r = null;
        // x表示遍历的当前节点
        for (TreeNode<K,V> x = b, next; x != null; x = next) {
            next = (TreeNode<K,V>)x.next;
            // 强制设置当前插入节点的左右子树为null
            x.left = x.right = null;
            // ----------------------------------------------------------------------
            // CASE1:
            // 条件成立:说明当前红黑树是一个空树,那么设置插入元素为根节点
            // 第一次循环,r一定是null
            if (r == null) {
                // 根节点的父节点 一定为 null
                x.parent = null;
                // 颜色改为黑色
                x.red = false;
                // 让r引用x所指向的对象。
                r = x;
            }
			// ----------------------------------------------------------------------
            // CASE2:r != null	
            else {
                // 非第一次循环,都会来带else分支,此时红黑树根节点已经有数据了
                // k 表示 插入节点的key
                K k = x.key;
                // h 表示 插入节点的hash
                int h = x.hash;
                // kc 表示 插入节点key的class类型
                Class<?> kc = null;
                // p 表示 为查找插入节点的父节点的一个临时节点
                TreeNode<K,V> p = r;
                // 这里的for循环,就是一个查找并插入的过程
                for (;;) {
                    // dir (-1, 1)
                    // -1 表示插入节点的hash值大于 当前p节点的hash
                    // 1 表示插入节点的hash值 小于 当前p节点的hash
                    // ph p表示 为查找插入节点的父节点的一个临时节点的hash
                    int dir, ph;
                    // 临时节点 key
                    K pk = p.key;
                    // 插入节点的hash值 小于 当前节点
                    if ((ph = p.hash) > h)
                        // 插入节点可能需要插入到当前节点的左子节点 或者 继续在左子树上查找
                        dir = -1;
                    // 插入节点的hash值 大于 当前节点
                    else if (ph < h)
                        // 插入节点可能需要插入到当前节点的右子节点 或者 继续在右子树上查找
                        dir = 1;
                    // 如果执行到 CASE3,说明当前插入节点的hash 与 当前节点的hash一致,会在case3 做出最终排序。最终
                    // 拿到的dir 一定不是0,(-1, 1)
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        dir = tieBreakOrder(k, pk);
                    // xp 想要表示的是 插入节点的 父节点
                    TreeNode<K,V> xp = p;
                    // 条件成立:说明当前p节点 即为插入节点的父节点
                    // 条件不成立:说明p节点 底下还有层次,需要将p指向 p的左子节点 或者 右子节点,表示继续向下搜索。
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        // 设置插入节点的父节点 为 当前节点
                        x.parent = xp;
                        // 小于P节点,需要插入到P节点的左子节点
                        if (dir <= 0)
                            xp.left = x;
                            // 大于P节点,需要插入到P节点的右子节点
                        else
                            xp.right = x;
                        // 插入节点后,红黑树性质 可能会被破坏,所以需要调用 平衡方法
                        r = balanceInsertion(r, x);
                        break;
                    }
                }
            }
        }
        // 将r 赋值给 TreeBin对象的 root引用。
        this.root = r;
        assert checkInvariants(root);
    }
    /**
     * Acquires write lock for tree restructuring.
     * 加锁:基于CAS的方式更新LOCKSTATE的值,期望值是0,更新值是WRITER(1,写锁)
     */
    private final void lockRoot() {
        // 条件成立:说明lockState 并不是 0,说明此时有其它读线程在treeBin红黑树中读取数据。
        if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
            // 竞争锁的过程
            contendedLock(); // offload to separate method
    }
    /**
     * Releases write lock for tree restructuring.
     * 释放锁
     */
    private final void unlockRoot() {
        // lockstate置为0
        lockState = 0;
    }
    /**
     * Possibly blocks awaiting root lock.
     */
    private final void contendedLock() {
        boolean waiting = false;
        // 表示lock值
        int s;
        for (;;) {
            // ~WAITER = 11111....01
            // 条件成立:说明目前TreeBin中没有读线程在访问 红黑树
            // 条件不成立:有线程在访问红黑树
            if (((s = lockState) & ~WAITER) == 0) {
                // 条件成立:说明写线程 抢占锁成功
                if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
                    if (waiting)
                        // 设置TreeBin对象waiter 引用为null
                        waiter = null;
                    return;
                }
            }
            // lock & 0000...10 = 0, 条件成立:说明lock 中 waiter 标志位 为0,此时当前线程可以设置为1了,然后将当前线程挂起。
            else if ((s & WAITER) == 0) {
                if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
                    waiting = true;
                    waiter = Thread.currentThread();
                }
            }
            // 条件成立:说明当前线程在CASE2中已经将 treeBin.waiter 设置为了当前线程,并且将lockState 中表示 等待者标记位的地方 设置为了1
            // 这个时候,就让当前线程 挂起。。
            else if (waiting)
                LockSupport.park(this);
        }
    }
    /**
     * Finds or adds a node.
     * @return null if added
     */
    final TreeNode<K,V> putTreeVal(int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if (p == null) {
                first = root = new TreeNode<K,V>(h, k, v, null, null);
                break;
            }
            else if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.findTreeNode(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }
            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                // 当前循环节点xp 即为 x 节点的爸爸
                // x 表示插入节点
                // f 老的头结点
                TreeNode<K,V> x, f = first;
                first = x = new TreeNode<K,V>(h, k, v, f, xp);
                // 条件成立:说明链表有数据
                if (f != null)
                    // 设置老的头结点的前置引用为 当前的头结点。
                    f.prev = x;
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;

                if (!xp.red)
                    x.red = true;
                else {
                    // 表示 当前新插入节点后,新插入节点 与 父节点 形成 “红红相连”
                    lockRoot();
                    try {
                        // 平衡红黑树,使其再次符合规范。
                        root = balanceInsertion(root, x);
                    } finally {
                        unlockRoot();
                    }
                }
                break;
            }
        }
        assert checkInvariants(root);
        return null;
    }
}

2、treeifyBin方法分析

treeifyBin:TreeBin的成员方法,转换链表为红黑树的方法:

/**
 * 将链表转换成红黑树
 */
private final void treeifyBin(Node<K,V>[] tab, int index) {
    // b:
    // n: tab的长度
    // sc: sizeCtl
    Node<K,V> b; int n, sc;
    if (tab != null) {
        // ---------------------------------------------------------------------------
        // CASE1:
        // 条件成立:说明当前table数组长度未达到 64,此时不进行树化操作,而进行扩容操作。
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            // table进行扩容
            tryPresize(n << 1);
        // ---------------------------------------------------------------------------
        // CASE2:
        // 条件成立:说明当前桶位有数据,且是普通node数据。
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
			// 给头元素b加锁
            synchronized (b) {
                // 条件成立:表示加锁没问题,b没有被其他线程修改过
                if (tabAt(tab, index) == b) {
                    // 下面的for循环逻辑,目的就是把桶位中的单链表转换成双向链表,便于树化~
					// hd指向双向列表的头部,tl指向双向链表的尾部
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
					// 把node单链表转换的双向链表转换成TreeBin对象
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

3、find方法分析

find:TreeBin中的查找方法。

final Node<K,V> find(int h, Object k) {
    if (k != null) {
        // e 表示循环迭代的当前节点:迭代的是first引用的链表
        for (Node<K,V> e = first; e != null; ) {
            // s 保存的是lock临时状态
            // ek 链表当前节点 的key
            int s; K ek;
            // ----------------------------------------------------------------------
            // CASE1:
            // (WAITER|WRITER) => 0010 | 0001 => 0011
            // lockState & 0011 != 0 条件成立:说明当前TreeBin有等待者线程 或者 目前有写操作线程正在加锁
            if (((s = lockState) & (WAITER|WRITER)) != 0) {
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
                e = e.next;
            }
            // ----------------------------------------------------------------------
            // CASE2:
            // 前置条件:当前TreeBin中 等待者线程 或者 写线程 都没有
            // 条件成立:说明添加读锁成功
            else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                         s + READER)) {
                TreeNode<K,V> r, p;
                try {
                    // 查询操作
                    p = ((r = root) == null ? null :
                         r.findTreeNode(h, k, null));
                } finally {
                    // w 表示等待者线程
                    Thread w;
                    // U.getAndAddInt(this, LOCKSTATE, -READER) == (READER|WAITER)
                    // 1.当前线程查询红黑树结束,释放当前线程的读锁 就是让 lockstate 值 - 4
                    // (READER|WAITER) = 0110 => 表示当前只有一个线程在读,且“有一个线程在等待”
                    // 当前读线程为 TreeBin中的最后一个读线程。
                    // 2.(w = waiter) != null 说明有一个写线程在等待读操作全部结束。
                    if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                        (READER|WAITER) && (w = waiter) != null)
                        // 使用unpark 让 写线程 恢复运行状态。
                        LockSupport.unpark(w);
                }
                return p;
            }
        }
    }
    return null;
}



版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/weixin_43591980/article/details/116502352
相关文章
  • SpringBoot自定义错误处理逻辑介绍

    SpringBoot自定义错误处理逻辑介绍
    1. 自定义错误页面 将自定义错误页面放在 templates 的 error 文件夹下,SpringBoot 精确匹配错误信息,使用 4xx.html 或者 5xx.html 页面可以打印错误
  • Java实现手写一个线程池的代码

    Java实现手写一个线程池的代码
    线程池技术想必大家都不陌生把,相信在平时的工作中没有少用,而且这也是面试频率非常高的一个知识点,那么大家知道它的实现原理和
  • Java实现断点续传功能的代码

    Java实现断点续传功能的代码
    题目实现:网络资源的断点续传功能。 二、解题思路 获取要下载的资源网址 显示网络资源的大小 上次读取到的字节位置以及未读取的字节
  • 你可知HashMap为什么是线程不安全的
    HashMap 的线程不安全 HashMap 的线程不安全主要体现在下面两个方面 在 jdk 1.7 中,当并发执行扩容操作时会造成环形链和数据丢失的情况 在
  • ArrayList的动态扩容机制的介绍

    ArrayList的动态扩容机制的介绍
    对于 ArrayList 的动态扩容机制想必大家都听说过,之前的文章中也谈到过,不过由于时间久远,早已忘却。 所以利用这篇文章做做笔记,加
  • JVM基础之字节码的增强技术介绍

    JVM基础之字节码的增强技术介绍
    字节码增强技术 在上文中,着重介绍了字节码的结构,这为我们了解字节码增强技术的实现打下了基础。字节码增强技术就是一类对现有字
  • Java中的字节码增强技术

    Java中的字节码增强技术
    1.字节码增强技术 字节码增强技术就是一类对现有字节码进行修改或者动态生成全新字节码文件的技术。 参考地址 2.常见技术 技术分类 类
  • Redis BloomFilter布隆过滤器原理与实现

    Redis BloomFilter布隆过滤器原理与实现
    Bloom Filter 概念 布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的。它实际上是一个很长的二进制向量和一系列随机映射
  • Java C++算法题解leetcode801使序列递增的最小交换次

    Java C++算法题解leetcode801使序列递增的最小交换次
    题目要求 思路:状态机DP 实现一:状态机 Java 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 class Solution { public int minSwap(int[] nums1, int[] nums2) { int n
  • Mybatis结果集映射与生命周期介绍

    Mybatis结果集映射与生命周期介绍
    一、ResultMap结果集映射 1、设计思想 对简单的语句做到零配置,对于复杂一点的语句,只需要描述语句之间的关系就行了 2、resultMap的应用场
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计