| 
			 #include<iostream> 
			#include<opencv2/opencv.hpp> 
			#include<opencv2/ml.hpp> 
			using namespace std; 
			using namespace cv; 
			using namespace cv::ml; 
			  
			  
			//**自定义结构体 
			struct MyNum 
			{ 
			    cv::Mat mat; //数字图片 
			    cv::Rect rect;//相对整张图所在矩形 
			    int label;//数字标签 
			}; 
			  
			int main() 
			{ 
			    Mat src = imread("digit.png"); 
			    if (src.empty()) 
			    { 
			        cout << "No Image..." << endl; 
			        system("pause"); 
			        return -1; 
			    } 
			  
			    Mat gray; 
			    cvtColor(src, gray, COLOR_BGR2GRAY); 
			  
			    const int classNum = 10;  //总共有0~9个数字类别 
			    const int picNum = 20;//每个类别共20张图片 
			    const int pic_w = 28;//图片宽 
			    const int pic_h = 28;//图片高 
			  
			    //将数据集分为训练集、测试集 
			    double totalNum = classNum * picNum;//图片总数 
			    double per = 0.8;   //百分比--修改百分比可改变训练集、测试集比重 
			    double trainNum = totalNum * per;//训练图片数量 
			    double testNum = totalNum * (1.0 - per);//测试图片数量 
			  
			    Mat Train_Data, Train_Label;//用于训练 
			    vector<MyNum>TestData;//用于测试 
			    for (int i = 0; i < picNum; i++) 
			    { 
			        for (int j = 0; j < classNum; j++) 
			        { 
			            //将所有图片数据都拷贝到Mat矩阵里 
			            Mat temp; 
			            gray(Range(j*pic_w, j*pic_w + pic_w), Range(i*pic_h, i*pic_h + pic_h)).copyTo(temp); 
			            Train_Data.push_back(temp.reshape(0, 1)); //将temp数字图像reshape成一行数据,然后一一追加到Train_Data矩阵中 
			            Train_Label.push_back(j); 
			  
			            //额外用于测试 
			            if (i * classNum + j >= trainNum) 
			            { 
			                TestData.push_back({ temp,Rect(i*pic_w,j*pic_h,pic_w,pic_h),j }); 
			            } 
			        } 
			    } 
			  
			    //准备训练数据集 
			    Train_Data.convertTo(Train_Data, CV_32FC1); //转化为CV_32FC1类型 
			    Train_Label.convertTo(Train_Label, CV_32FC1); 
			    Mat TrainDataMat = Train_Data(Range(0, trainNum), Range::all()); //只取trainNum行训练 
			    Mat TrainLabelMat = Train_Label(Range(0, trainNum), Range::all()); 
			  
			    //KNN训练 
			    const int k = 3;  //k值,取奇数,影响最终识别率 
			    Ptr<KNearest>knn = KNearest::create();  //构造KNN模型 
			    knn->setDefaultK(k);//设定k值 
			    knn->setIsClassifier(true);//KNN算法可用于分类、回归。 
			    knn->setAlgorithmType(KNearest::BRUTE_FORCE);//字符匹配算法 
			    knn->train(TrainDataMat, ROW_SAMPLE, TrainLabelMat);//模型训练 
			  
			    //预测及结果显示 
			    double count = 0.0; 
			    Scalar color; 
			    for (int i = 0; i < TestData.size(); i++) 
			    { 
			        //将测试图片转成CV_32FC1,单行形式 
			        Mat data = TestData[i].mat.reshape(0, 1); 
			        data.convertTo(data, CV_32FC1); 
			        Mat sample = data(Range(0, data.rows), Range::all()); 
			  
			        float f = knn->predict(sample); //预测 
			        if (f == TestData[i].label) 
			        { 
			            color = Scalar(0, 255, 0); //如果预测正确,绘制绿色,并且结果+1 
			            count++; 
			        } 
			        else 
			        { 
			            color = Scalar(0, 0, 255);//如果预测错误,绘制红色 
			        } 
			  
			        rectangle(src, TestData[i].rect, color, 2); 
			    } 
			  
			    //将绘制结果拷贝到一张新图上 
			    Mat result(Size(src.cols, src.rows + 50), CV_8UC3, Scalar::all(255)); 
			    src.copyTo(result(Rect(0, 0, src.cols, src.rows))); 
			    //将得分在结果图上显示 
			    char text[10]; 
			    int score = (count / testNum) * 100; 
			    sprintf_s(text, "%s%d%s", "Score:", score, "%"); 
			    putText(result, text, Point((result.cols / 2) - 80, result.rows - 15), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2); 
			    imshow("test", result); 
			    imwrite("result.jpg", result); 
			    waitKey(0); 
			    system("pause"); 
			    return 0; 
			} 
			 |