广告位联系
返回顶部
分享到

Golang自旋锁的介绍

Golang 来源:互联网 作者:佚名 发布时间:2022-10-11 21:27:50 人浏览
摘要

自旋锁 获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成busy-waiting。 它是为实现保护共享资源而提出的一种锁机制。其实,自旋锁与互斥锁比较类

自旋锁

获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成busy-waiting。 它是为实现保护共享资源而提出的一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能由一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,“自旋”一词就是因此而得名。

golang实现自旋锁

1

2

3

4

5

6

7

8

9

10

11

12

13

type spinLock uint32

func (sl *spinLock) Lock() {

    for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) {

        runtime.Gosched()

    }

}

func (sl *spinLock) Unlock() {

    atomic.StoreUint32((*uint32)(sl), 0)

}

func NewSpinLock() sync.Locker {

    var lock spinLock

    return &lock

}

可重入的自旋锁和不可重入的自旋锁

上面的代码,仔细分析一下就可以看出,它是不支持重入的,即当一个线程第一次已经获取到了该锁,在锁释放之前又一次重新获取该锁,第二次就不能成功获取到。由于不满足CAS,所以第二次获取会进入while循环等待,而如果是可重入锁,第二次也是应该能够成功获取到的。

而且,即使第二次能够成功获取,那么当第一次释放锁的时候,第二次获取到的锁也会被释放,而这是不合理的。

为了实现可重入锁,我们需要引入一个计数器,用来记录获取锁的线程数

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

type spinLock struct {

      owner int

      count  int

}

func (sl *spinLock) Lock() {

        me := GetGoroutineId()

        if spinLock .owner == me { // 如果当前线程已经获取到了锁,线程数增加一,然后返回

               sl.count++

               return

        }

        // 如果没获取到锁,则通过CAS自旋

    for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) {

        runtime.Gosched()

    }

}

func (sl *spinLock) Unlock() {

      if  rl.owner != GetGoroutineId() {

          panic("illegalMonitorStateError")

      }

      if sl.count >0  { // 如果大于0,表示当前线程多次获取了该锁,释放锁通过count减一来模拟

           sl.count--

       }else { // 如果count==0,可以将锁释放,这样就能保证获取锁的次数与释放锁的次数是一致的了。

           atomic.StoreUint32((*uint32)(sl), 0)

       }

}

func GetGoroutineId() int {

    defer func()  {

        if err := recover(); err != nil {

            fmt.Println("panic recover:panic info:%v", err)     }

    }()

    var buf [64]byte

    n := runtime.Stack(buf[:], false)

    idField := strings.Fields(strings.TrimPrefix(string(buf[:n]), "goroutine "))[0]

    id, err := strconv.Atoi(idField)

    if err != nil {

        panic(fmt.Sprintf("cannot get goroutine id: %v", err))

    }

    return id

}

func NewSpinLock() sync.Locker {

    var lock spinLock

    return &lock

}

自旋锁的其他变种

1. TicketLock

TicketLock主要解决的是公平性的问题。

思路:每当有线程获取锁的时候,就给该线程分配一个递增的id,我们称之为排队号,同时,锁对应一个服务号,每当有线程释放锁,服务号就会递增,此时如果服务号与某个线程排队号一致,那么该线程就获得锁,由于排队号是递增的,所以就保证了最先请求获取锁的线程可以最先获取到锁,就实现了公平性。

可以想象成银行办业务排队,排队的每一个顾客都代表一个需要请求锁的线程,而银行服务窗口表示锁,每当有窗口服务完成就把自己的服务号加一,此时在排队的所有顾客中,只有自己的排队号与服务号一致的才可以得到服务。

2. CLHLock

CLH锁是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋,获得锁。

3. MCSLock

MCSLock则是对本地变量的节点进行循环。

4. CLHLock 和 MCSLock

都是基于链表,不同的是CLHLock是基于隐式链表,没有真正的后续节点属性,MCSLock是显示链表,有一个指向后续节点的属性。

将获取锁的线程状态借助节点(node)保存,每个线程都有一份独立的节点,这样就解决了TicketLock多处理器缓存同步的问题。

自旋锁与互斥锁

  • 自旋锁与互斥锁都是为了实现保护资源共享的机制。
  • 无论是自旋锁还是互斥锁,在任意时刻,都最多只能有一个保持者。
  • 获取互斥锁的线程,如果锁已经被占用,则该线程将进入睡眠状态;获取自旋锁的线程则不会睡眠,而是一直循环等待锁释放。

总结

  • 自旋锁:线程获取锁的时候,如果锁被其他线程持有,则当前线程将循环等待,直到获取到锁。
  • 自旋锁等待期间,线程的状态不会改变,线程一直是用户态并且是活动的(active)。
  • 自旋锁如果持有锁的时间太长,则会导致其它等待获取锁的线程耗尽CPU。
  • 自旋锁本身无法保证公平性,同时也无法保证可重入性。
  • 基于自旋锁,可以实现具备公平性和可重入性质的锁。
  • TicketLock:采用类似银行排号叫好的方式实现自旋锁的公平性,但是由于不停的读取serviceNum,每次读写操作都必须在多个处理器缓存之间进行缓存同步,这会导致繁重的系统总线和内存的流量,大大降低系统整体的性能。
  • CLHLock和MCSLock通过链表的方式避免了减少了处理器缓存同步,极大的提高了性能,区别在于CLHLock是通过轮询其前驱节点的状态,而MCS则是查看当前节点的锁状态。
  • CLHLock在NUMA架构下使用会存在问题。在没有cache的NUMA系统架构中,由于CLHLock是在当前节点的前一个节点上自旋,NUMA架构中处理器访问本地内存的速度高于通过网络访问其他节点的内存,所以CLHLock在NUMA架构上不是最优的自旋锁。

版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/qq_53267860/article/details/127160684
相关文章
  • 基于GORM实现CreateOrUpdate的方法
    CreateOrUpdate 是业务开发中很常见的场景,我们支持用户对某个业务实体进行创建/配置。希望实现的 repository 接口要达到以下两个要求: 如果
  • Golang中的内存逃逸的介绍
    什么是内存逃逸分析 内存逃逸分析是go的编译器在编译期间,根据变量的类型和作用域,确定变量是堆上还是栈上 简单说就是编译器在编译
  • Golang自旋锁的介绍
    自旋锁 获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成busy-waiting。 它是为实现保护共享资源而提出的
  • Go语言读写锁RWMutex的源码

    Go语言读写锁RWMutex的源码
    在前面两篇文章中初见 Go Mutex、Go Mutex 源码详解,我们学习了Go语言中的Mutex,它是一把互斥锁,每次只允许一个goroutine进入临界区,可以保
  • Go项目实现优雅关机与平滑重启功能
    什么是优雅关机? 优雅关机就是服务端关机命令发出后不是立即关机,而是等待当前还在处理的请求全部处理完毕后再退出程序,是一种对
  • Go语言操作Excel利器之excelize类库的介绍
    在开发中一些需求需要通过程序操作excel文档,例如导出excel、导入excel、向excel文档中插入图片、表格和图表等信息,使用Excelize就可以方便
  • 利用Go语言快速实现一个极简任务调度系统

    利用Go语言快速实现一个极简任务调度系统
    任务调度(Task Scheduling)是很多软件系统中的重要组成部分,字面上的意思是按照一定要求分配运行一些通常时间较长的脚本或程序。在爬
  • GoLang中的iface 和 eface 的区别介绍

    GoLang中的iface 和 eface 的区别介绍
    GoLang之iface 和 eface 的区别是什么? iface和eface都是 Go 中描述接口的底层结构体,区别在于iface描述的接口包含方法,而eface则是不包含任何方
  • Golang接口使用的教程
    go语言并没有面向对象的相关概念,go语言提到的接口和java、c++等语言提到的接口不同,它不会显示的说明实现了接口,没有继承、子类、
  • go colly 爬虫实现示例介绍
    贡献某CC,go源码爬虫一个,基于colly,效果是根据输入的浏览器cookie及excel必要行列号,从excel中读取公司名称,查询公司法人及电话号码。
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计