广告位联系
返回顶部
分享到

Python多线程之threading模块的使用

python 来源:转载 作者:秩名 发布时间:2021-04-14 22:23:20 人浏览
摘要

简介 Python 通过 _thread 和 threading 模块提供了对多线程的支持,threading 模块兼具了 _thread 模块的现有功能,又扩展了一些新的功能,具有十分丰富的线程操作功能 创建线程 使用 threading 模块创建线程通常有两种方式: 1)使用 threading 模块中 Thr

简介

Python 通过 _thread 和 threading 模块提供了对多线程的支持,threading 模块兼具了 _thread 模块的现有功能,又扩展了一些新的功能,具有十分丰富的线程操作功能

创建线程

使用 threading 模块创建线程通常有两种方式:

1)使用 threading 模块中 Thread 类的构造器创建线程,即直接对类 threading.Thread 进行实例化,并调用实例化对象的 start 方法创建线程;

2)继承 threading 模块中的 Thread 类创建线程类,即用 threading.Thread 派生出一个新的子类,将新建类实例化,并调用其 start 方法创建线程。

构造器方式

调用 threading.Thread 类的如下构造器创建线程:

threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

group:指定该线程所属的线程组,目前该参数还未实现,为了日后扩展 ThreadGroup 类实现而保留。
target:用于 run() 方法调用的可调用对象,默认是 None,表示不需要调用任何方法。
args:是用于调用目标函数的参数元组,默认是 ()。
kwargs:是用于调用目标函数的关键字参数字典,默认是 {}。
daemon:如果 daemon 不是 None,线程将被显式的设置为守护模式,不管该线程是否是守护模式,如果是 None (默认值),线程将继承当前线程的守护模式属性。
import time
import threading

def work(num):
    print('线程名称:',threading.current_thread().getName(),'参数:',num,'开始时间:',time.strftime('%Y-%m-%d %H:%M:%S'))

if __name__ == '__main__':
    print('主线程开始时间:',time.strftime('%Y-%m-%d %H:%M:%S'))
    
    t1 = threading.Thread(target=work,args=(3,))
    t2 = threading.Thread(target=work,args=(2,))
    t3 = threading.Thread(target=work,args=(1,))
    
    t1.start()
    t2.start()
    t3.start()
    
    t1.join()
    t2.join()
    t3.join()
    
    print('主线程结束时间:', time.strftime('%Y-%m-%d %H:%M:%S'))

上述示例中实例化了三个 Thread 类的实例,并向任务函数传递不同的参数,start 方法开启线程,join 方法阻塞主线程,等待当前线程运行结束。

继承方式

通过继承的方式创建线程包括如下步骤:1)定义 Thread 类的子类,并重写该类的 run 方法;2)创建 Thread 子类的实例,即创建线程对象;3)调用线程对象的 start 方法来启动线程。示例如下:

import time
import threading

class MyThread(threading.Thread):
    
    def __init__(self,num):
        super().__init__()
        self.num = num
    
    def run(self):
        print('线程名称:', threading.current_thread().getName(), '参数:', self.num, '开始时间:', time.strftime('%Y-%m-%d %H:%M:%S'))

if __name__ == '__main__':
   
     print('主线程开始时间:',time.strftime('%Y-%m-%d %H:%M:%S'))
    
    t1 = MyThread(3)
    t2 = MyThread(2)
    t3 = MyThread(1)
   
     t1.start()
    t2.start()
    t3.start()
    
    t1.join()
    t2.join()
    t3.join()
    
    print('主线程结束时间:', time.strftime('%Y-%m-%d %H:%M:%S'))
 

上述示例中自定义了线程类 MyThread,继承了 threading.Thread,并重写了 __init__ 方法和 run 方法。

守护线程

守护线程(也称后台线程)是在后台运行的,它的任务是为其他线程提供服务,如 Python 解释器的垃圾回收线程就是守护线程。如果所有的前台线程都死亡了,守护线程也会自动死亡。来看个例子:

# 不设置守护线程
import threading

def work(num):
    for i in range(num):
        print(threading.current_thread().name + "  " + str(i))

t = threading.Thread(target=work, args=(10,), name='守护线程')
t.start()

for i in range(10):
    pass
 
# 设置守护线程
import threading

def work(num):
    for i in range(num):
        print(threading.current_thread().name + "  " + str(i))

t = threading.Thread(target=work, args=(10,), name='守护线程')
t.daemon = True
t.start()

for i in range(10):
    pass
 

上述示例直观的说明了当前台线程结束,守护线程也会自动结束。

如果你设置一个线程为守护线程,就表示这个线程是不重要的,在进程退出的时候,不用等待这个线程退出;如果你的主线程在退出的时候,不用等待哪些子线程完成,那就设置这些线程为守护线程;如果你想等待子线程完成后再退出,那就什么都不用做,或者显示地将  daemon 属性设置为 false。

线程本地数据

Python 的 threading 模块提供了 local 方法,该方法返回得到一个全局对象,不同线程使用这个对象存储的数据,其它线程是不可见的(本质上就是不同的线程使用这个对象时为其创建一个独立的字典)。来看个示例:

# 不使用 threading.local
import threading
import time

num = 0

def work():
    global num
    
    for i in range(10):
        num += 1
        
    print(threading.current_thread().getName(), num)
    time.sleep(0.0001)
    
for i in range(5):
    threading.Thread(target=work).start()
 

上面示例中 num 是全局变量,变成了公共资源,通过输出结果,我们发现子线程之间的计算结果出现了互相干扰的情况。

# 使用 threading.local
num = threading.local()

def work():
    num.x = 0
    
    for i in range(10):
        num.x += 1
    
    print(threading.current_thread().getName(), num.x)
    time.sleep(0.0001)

for i in range(5):
    threading.Thread(target=work).start()
 

使用 threading.local 的示例中,num 是全局变量,但每个线程定义的属性 num.x 是各自线程独有的,其它线程是不可见的,因此每个线程的计算结果未出现相互干扰的情况。

定时器

threading 模块提供了 Timer 类实现定时器功能,来看个例子:

# 单次执行
from threading import Timer

def work():
    print("Hello Python")
    
# 5 秒后执行 work 方法
t = Timer(5, work)
t.start()
 

Timer 只能控制函数在指定的时间内执行一次,如果我们需要多次重复执行,需要再进行一次调度,想要取消调度时可以使用 Timer 的 cancel 方法。来看个例子:

# 重复执行
count = 0

def work():
    print('当前时间:', time.strftime('%Y-%m-%d %H:%M:%S'))
    global t, count
    count += 1
    # 如果 count 小于 5,开始下一次调度
    if count < 5:
        t = Timer(1, work)
        t.start()

# 指定 2 秒后执行 work 方法
t = Timer(2, work)
t.start()
 


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://cloud.tencent.com/developer/article/1810971
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计