广告位联系
返回顶部
分享到

pandas实现按行选择的代码

python 来源:转载 作者:秩名 发布时间:2021-07-22 07:33:15 人浏览
摘要

本文所用到的Excel表格内容如下: 1.自定义行索引 dataframe读取Excel表格时是由自定义行索引的。这里为了展示效果,先进行自定义行索引的操作 import pandas as pddf = pd.read_excel(rC:\Users\admin\Desktop\data_test.xlsx)print(设置索引前:)print(df)p

本文所用到的Excel表格内容如下:



1.自定义行索引

dataframe读取Excel表格时是由自定义行索引的。这里为了展示效果,先进行自定义行索引的操作

import pandas as pd
​
df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
print('设置索引前:')
print(df)
print('设置索引后:')
df.index = ['一', '二', '三', '四', '五']
print(df)

result:
设置索引前:
   区域   省份  城市         时间  指标     地址    权重      字符
0  东北   辽宁  大连 2019-09-06  12  “123“  0.78  u"123"
1  西北   广东  西安 2019-09-07  87  “124“  0.65  u"124"
2  华南   北京  深圳 2019-09-08  87  “125“  0.34  u"125"
3  华北   湖北  北京 2019-09-09  45  “126“  1.23  u"126"
4  华中  黑龙江  武汉 2019-09-10  21  “127“  8.90  u"127"
设置索引后:
   区域   省份  城市         时间  指标     地址    权重      字符
一  东北   辽宁  大连 2019-09-06  12  “123“  0.78  u"123"
二  西北   广东  西安 2019-09-07  87  “124“  0.65  u"124"
三  华南   北京  深圳 2019-09-08  87  “125“  0.34  u"125"
四  华北   湖北  北京 2019-09-09  45  “126“  1.23  u"126"
五  华中  黑龙江  武汉 2019-09-10  21  “127“  8.90  u"127"

2. 按普通索引选择数据

这里说一下,行普通索引实际上就是行名。为了行文方便,后续一律称普通索引。

2.1 按普通索引选择单行数据

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
df.index = ['一', '二', '三', '四', '五']
print(df.loc['一'])

result:
区域                     东北
省份                     辽宁
城市                     大连
时间    2019-09-06 00:00:00
指标                     12
地址                  “123“
权重                   0.78
字符                 u"123"
Name: 一, dtype: object

2.2 按行索引选择多行数据

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
df.index = ['一', '二', '三', '四', '五']
print(df.loc[['一', '三', '四']])

result:
   区域  省份  城市         时间  指标     地址    权重      字符
一  东北  辽宁  大连 2019-09-06  12  “123“  0.78  u"123"
三  华南  北京  深圳 2019-09-08  87  “125“  0.34  u"125"
四  华北  湖北  北京 2019-09-09  45  “126“  1.23  u"126"

注:选择单列数据是参数为字符串类型,多列数据时参数为列表类型

3.按位置索引选择数据

3.1 按位置索引选择单行数据

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
df.index = ['一', '二', '三', '四', '五']
print(df.iloc[0])

result:
区域                     东北
省份                     辽宁
城市                     大连
时间    2019-09-06 00:00:00
指标                     12
地址                  “123“
权重                   0.78
字符                 u"123"
Name: 一, dtype: object

3.2 按位置索引选择多行数据

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
df.index = ['一', '二', '三', '四', '五']
print(df.iloc[[0, 1]])

result:
   区域  省份  城市         时间  指标     地址    权重      字符
一  东北  辽宁  大连 2019-09-06  12  “123“  0.78  u"123"
二  西北  广东  西安 2019-09-07  87  “124“  0.65  u"124"

4.选择连续多行数据

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
df.index = ['一', '二', '三', '四', '五']
print(df.iloc[0:2])

result:
   区域  省份  城市         时间  指标     地址    权重      字符
一  东北  辽宁  大连 2019-09-06  12  “123“  0.78  u"123"
二  西北  广东  西安 2019-09-07  87  “124“  0.65  u"124"

表示获取所有行第1列到第3列的数据。选择连续多列数据时语法类似于切片语法,所以也称之为切片索引。

5.选择满足条件的行

5.1单个条件选择

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
print(df[df['指标'] < 50])

result:
   区域   省份  城市         时间  指标    权重
0  东北   辽宁  大连 2019-09-06  12  0.78
3  华北   湖北  北京 2019-09-09  45  1.23
4  华中  黑龙江  武汉 2019-09-10  21  8.90

5.2 多个条件选择

5.2.1 多个条件是且的关系

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
print(df[(df['指标'] < 50) & (df['权重'] < 1)])

result:
   区域  省份  城市         时间  指标    权重
0  东北  辽宁  大连 2019-09-06  12  0.78

5.2.2 多个条件是或的关系

df = pd.read_excel(r'C:UsersdminDesktopdata_test.xlsx')
print(df[(df['指标'] < 50) | (df['权重'] < 1)])

result:
   区域   省份  城市         时间  指标    权重
0  东北   辽宁  大连 2019-09-06  12  0.78
1  西北   广东  西安 2019-09-07  87  0.65
2  华南   北京  深圳 2019-09-08  87  0.34
3  华北   湖北  北京 2019-09-09  45  1.23
4  华中  黑龙江  武汉 2019-09-10  21  8.90


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://juejin.cn/post/6987014439019446285
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计