广告位联系
返回顶部
分享到

pandas数值排序的实现方法

python 来源:转载 作者:秩名 发布时间:2021-07-26 07:17:36 人浏览
摘要

本文用到的表格内容如下: 排序前先来看一下原始情形: import pandas as pddf = pd.read_excel(rC:\Users\admin\Desktop\测试.xlsx)print(df) result: 姓名 年龄 成绩 0 小明 23.0 78 1 小刚 NaN 89 2 小红 876.0 65 3 李华 65.0 89 4 小美 NaN 43 5 张三 34.

本文用到的表格内容如下:

排序前先来看一下原始情形:

import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:
   姓名     年龄  成绩
0  小明   23.0  78
1  小刚    NaN  89
2  小红  876.0  65
3  李华   65.0  89
4  小美    NaN  43
5  张三   34.0  90
6  李四    NaN  34
7  王五   98.5  87

1.按照一列数值进行排序

按照某一列数值进行排序就是整个数据表都要以某一列为准,进行升序或降序
排序需要用到sort_values()方法,在sort_values()方法中要通过by参数指明要排序的列名,通过ascending参数知名升序还是降序。

1.1按照五缺失值的一列进行排序

1.1.1升序排列

该方法默认升序排列(即ascending参数的默认值是True),使用by参数用来指定需要排序的列名

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["成绩"]))

result:
   姓名     年龄  成绩
6  李四    NaN  34
4  小美    NaN  43
2  小红  876.0  65
0  小明   23.0  78
7  王五   98.5  87
1  小刚    NaN  89
3  李华   65.0  89
5  张三   34.0  90

1.1.2 降序排列

只要设置ascending参数的值为False,即可实现降序排列

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["成绩"], ascending=False))

result:
   姓名     年龄  成绩
5  张三   34.0  90
1  小刚    NaN  89
3  李华   65.0  89
7  王五   98.5  87
0  小明   23.0  78
2  小红  876.0  65
4  小美    NaN  43
6  李四    NaN  34

 

1.2按照有缺失值的一列进行排序

当待排序的列中有缺失值时,可以通过设置na_position参数对缺失值的显示位置进行设置

1.2.1 缺失值显示在最后

该方法默认缺失值显示在最后(na_position参数的默认值是last)

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["成绩"]))

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["年龄"]))

result:
   姓名     年龄  成绩
0  小明   23.0  78
5  张三   34.0  90
3  李华   65.0  89
7  王五   98.5  87
2  小红  876.0  65
1  小刚    NaN  89
4  小美    NaN  43
6  李四    NaN  34

1.2.2 缺失值显示在最前面

只要设置na_position参数的值为first,即可实现缺失值显示在最前面

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["年龄"], na_position='first'))

result:
   姓名     年龄  成绩
1  小刚    NaN  89
4  小美    NaN  43
6  李四    NaN  34
0  小明   23.0  78
5  张三   34.0  90
3  李华   65.0  89
7  王五   98.5  87
2  小红  876.0  65

2.按照多列数值进行排序

按照多列数值排序是指同时依据多列数据进行升序、降序排列。当第一列出现重复值时按照第二列进行排序,第二列出现重复值时按照第三列进行排序,依次类推。
此时在sort_values()方法中需要排序的多个列名要以列表的形式传递给by参数,需要每个排序的列名所对应的排序方式也要以列表的形式传递给ascending参数,二者的列表要一一对应。

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sort_values(by=["成绩", "年龄"], ascending=[True, False]))

result:
   姓名     年龄  成绩
6  李四    NaN  34
4  小美    NaN  43
2  小红  876.0  65
0  小明   23.0  78
7  王五   98.5  87
3  李华   65.0  89
1  小刚    NaN  89
5  张三   34.0  90

此时按照成绩进行升序排列,当成绩相同时再按照年龄进行降序排列。


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://juejin.cn/post/6988136231750090766
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计