光学元件类 平面反射镜是一种极为简单的模型,因为我们只需要考虑一个平面即可。但是除此之外的其他光学元件,可能会变得有些复杂:我们必须考虑光在入射面和出射面的行为。 这当然是一句废话,而且我们也有了一个初步的解决方案:将光学元件拆成前表面和后表
光学元件类
平面反射镜是一种极为简单的模型,因为我们只需要考虑一个平面即可。但是除此之外的其他光学元件,可能会变得有些复杂:我们必须考虑光在入射面和出射面的行为。 这当然是一句废话,而且我们也有了一个初步的解决方案:将光学元件拆成前表面和后表面即可。如果光需要在光学元件中反射多次,那就将光学元件拆成需要反射次数的表面个数即可,完美而无脑。 这说明我们已经熟悉了程序员的思维,我们眼中的世界已经不再是一个所见即所得的世界,我们看到的是一个个抽象零部件的表现。但是也不要惊慌,程序员和正常人也未必有很大的区别,因为我们除了可以将这个世界拆解,也可以将拆解之后的部件重新构造回这个世界。
尝试着将问题想得复杂一些,光学系统中有许多光学元件,光会透过每个光学元件很多次,而且每次的入射点、出射点都会有一定的偏差。由于光学元件可能会对光的能量有所吸收,从而引起发热。而且每次的入射点、出射点不同,则发热位置也不一样。由于发热会导致光学元件发生形变,所以下一次光和光学元件的作用也会发生变化。 这就是所谓的面向对象。
在上例中,我们定义了一个光学元件类,这个光学元件有两个表面,这两个表面既可以是平面,也可以说弧面。这样,我们就建立了一个类。其中,__init__为初始化方法,self表示我们所创建的这个类本身。一般来说,如果类中的方法不加修饰符的话,就必须将self当作第一个参数。
self.edge1表示这个Opti类中,有一个成员的名字叫edge1。当这个类被初始化的时候,我们就可以对其进行赋值了。 其实很简单,只要增加一个方法,使得可以插入或者删除新的表面即可。
在上面的代码中,可以看到初始化函数被预设了一些值,这点与普通函数并无二致。我们可以看到,默认插入的两个曲面分别是平面[(0,-1),(0,1)]和弧面[(0,1),(0,-1),(1/2,0)],可见默认生成一个平凸镜。
成员变量self.edges即光学表面的列表,每个光学表面有两个参数,分别是索引index和点集dots。由此前的光学抽象可知,当点对中有两个点的时候,代表平面;有三个点的时候,代表弧面。 如果传入的参数为一个单值,那么说明传入的是索引号,所以直接删除即可。 在这个方法中,使用了一种新的代码块try:...except...,这是一种异常机制,即尝试运行try:块中的代码,如果运行失败,则执行except。如果我们没能执行成功delEdge,则说明我们输入的表面并不在这个光学元件中,所以输出"no this edge"。 这好像是第一次看到print这个命令呢,一般来说这应该是最先接触到的函数,毕竟对于大多数程序员来说,敲下的第一行代码就是
同时,我们除了数值类型之外,又认识了另一种数据类型,即字符。在python中,可以通过双引号或者单引号来表示单个字符或者字符串。即上述的hello world代码中,两行均正确,而且没什么区别。 现在,我们已经写了一个类,于是可以创建一个对象,在命令行中输入:
首先,from Opti import Opti的这两个Opti并不相同,前者代表包`Opti.py',后者代表Opti.py中的类'Opti',import之后便可以调用了。 然后出现了一个比较吊诡的事情,我们在类中并没有定义__name__,然而调用之后却有值产生。 请勿惊慌,其实是老熟人了。可以将__name__理解为python内部的内置属性,当我们直接执行某一.py文件时,这个__name__的值为__main__,否则的话就是类的名字。所以,到这个时候,我们似乎应该能明白入口函数的真正意义了吧。 继续向下,几乎所有的事情就都不出所料了。 |
2019-06-18
2019-07-04
2021-05-23
2021-05-27
2021-05-27