广告位联系
返回顶部
分享到

YOLOv5改进之添加SE注意力机制的过程

python 来源:互联网 作者:F11站长开发者 发布时间:2022-08-15 17:25:10 人浏览
摘要

作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLOv5的如何改进进

作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:

加入SE通道注意力机制,可以让网络更加关注待检测目标,提高检测效果

SE模块的原理和结构

添加方法:

第一步:确定添加的位置,作为即插即用的注意力模块,可以添加到YOLOv5网络中的任何地方。本文以添加进C3模块中为例。

第二步:common.py构建融入se模块的C3,与原C3模块不同的是,该模块中的bottleneck中融入se模块。这样添加主要为了更好的做实验。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

class seC3(nn.Module):

    # CSP Bottleneck with 3 convolutions

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion

        super(seC3, self).__init__()

        c_ = int(c2 * e)  # hidden channels

        self.cv1 = Conv(c1, c_, 1, 1)

        self.cv2 = Conv(c1, c_, 1, 1)

        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)

        self.m = nn.Sequential(*[seBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

  

    def forward(self, x):

        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

  

class seBottleneck(nn.Module):

    # Standard bottleneck

    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion

        super(seBottleneck, self).__init__()

        c_ = int(c2 * e)  # hidden channels

        self.cv1 = Conv(c1, c_, 1, 1)

        self.cv2 = Conv(c_, c2, 3, 1, g=g)

        self.add = shortcut and c1 == c2

        self.avgpool = nn.AdaptiveAvgPool2d(1)

        self.l1 = nn.Linear(c1, c1 // 4, bias=False)

        self.relu = nn.ReLU(inplace=True)

        self.l2 = nn.Linear(c1 // 4, c1, bias=False)

        self.sig = nn.Sigmoid()

  

    def forward(self, x):

        x = self.cv1(x)

        b, c, _, _ = x.size()

        y = self.avgpool(x).view(b, c)

        y = self.l1(y)

        y = self.relu(y)

        y = self.l2(y)

        y = self.sig(y)

        y = y.view(b, c, 1, 1)

        x = x * y.expand_as(x)

        return x + self.cv2(x) if self.add else self.cv2(self.cv1(x))

第三步:yolo.py中注册我们进行修改的seC3

1

2

3

4

5

6

7

8

9

if m in [Conv, GhostConv, Bottleneck, Bottleneck_cot,TransformerC3,GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,

         C3,seC3]:

    c1, c2 = ch[f], args[0]

    if c2 != no:  # if not output

        c2 = make_divisible(c2 * gw, 8)

    args = [c1, c2, *args[1:]]

    if m in [BottleneckCSP, seC3]:

        args.insert(2, n)  # number of repeats

        n = 1

第四步:修改yaml文件,本文以修改主干特征提取网络为例,将原C3模块改为seC3即可。

第五步:将train.py中改为本文的yaml文件即可,开始训练。

结果:

本人在多个数据集上做了大量实验,针对不同的数据集效果不同,同一个数据集的不同添加位置方法也是有差异,需要大家进行实验。有效果有提升的情况占大多数。

PS:SE通道注意力机制,参数量引入较少,不仅仅是可以添加进YOLOv5,也可以添加进任何其他的深度学习网络,不管是分类还是检测还是分割,主要是计算机视觉领域,都可能会有不同程度的提升效果。


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/m0_70388905/article/details/125379649
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计