广告位联系
返回顶部
分享到

python NumPy读取和保存点云数据实现

python 来源:互联网 作者:佚名 发布时间:2022-09-03 12:34:33 人浏览
摘要

前言 最近在学习点云处理的时候用到了Modelnet40数据集,该数据集总共有40个类别,每个样本的点云数据存放在一个TXT文件中,每行的前3个数据代表一个点的xyz坐标。我需要把TXT文件中

前言

最近在学习点云处理的时候用到了Modelnet40数据集,该数据集总共有40个类别,每个样本的点云数据存放在一个TXT文件中,每行的前3个数据代表一个点的xyz坐标。我需要把TXT文件中的每个点读取出来,然后用Open3D进行显示。

怎么把数据从TXT文件中读取出来呢?NumPy提供了一个功能非常强大的函数loadtxt可以非常简单地实现这个功能。来看一下代码:

1

2

3

4

5

6

7

8

9

import open3d as o3d

import numpy as np

def main():

    points_data = np.loadtxt("airplane_0001.txt", delimiter=",", dtype=np.float32)

    pcd = o3d.geometry.PointCloud()

    pcd.points = o3d.utility.Vector3dVector(points_data[:, :3])

    o3d.visualization.draw_geometries([pcd])

if __name__ == '__main__':

    main()

从上面的代码可以看到,只需要一行代码就可以把TXT文件中的点云数据读取进来了,接下来就可以调用Open3D的接口进行显示了。在介绍loadtxt函数的用法之前,顺便看一下Open3D的显示效果:

airplane

loadtxt函数的用法

基本用法

在上面的例子中,由于TXT里面每一行的数据是用逗号分割的,所以在调用loadtxt函数的时候除了设置文件路径外,还需要设置参数delimiter=","。另外,该函数默认的数据类型为float64,如果是其他数据类型的话还需要设置dtype为对应类型。

1

2

3

points_data = np.loadtxt("airplane_0001.txt", delimiter=",") #没有指定数据类型

print('shape: ', points_data.shape)

print('data type: ', points_data.dtype)

结果:

shape:  (10000, 6)
data type:  float64 

指定每一列的数据类型

假如我们有一个CSV文件:

1

2

3

4

5

x,y,z,label,id

-0.098790,-0.182300,0.163800,1,1

0.994600,0.074420,0.010250,0.2,2

0.189900,-0.292200,-0.926300,3,3

-0.989200,0.074610,-0.012350,4,4

该文件前面3列的数据类型是浮点型,后面2列的数据类型为整型,那么按照前面的方式设置dtype来读取就不合适了。不过没关系,loadtxt函数可以设置每一列数据的数据类型,只不过稍微复杂一点,来看一下代码:

1

2

3

4

5

6

data = np.loadtxt("test.txt", delimiter=",",

                      dtype={'names': ('x', 'y', 'z', 'label', 'id'),

                            'formats': ('f4', 'f4', 'f4', 'i4', 'i4')},

                      skiprows=1)

print('data: ', data)

print('data type: ', data.dtype)

这段代码的重点是dtype={}里面的内容,'names'用来设置每一列数据的名称,'formats'则用来设置每一列数据的数据类型,其中'f4'表示float32,'i4'表示int32。另外,CSV文件中的第一行不是数据内容,可以设置参数skiprows=1跳过第一行的内容。

输出结果:

data:  [(-0.09879, -0.1823 ,  0.1638 , 1, 1) ( 0.9946 ,  0.07442,  0.01025, 0, 2)
 ( 0.1899 , -0.2922 , -0.9263 , 3, 3) (-0.9892 ,  0.07461, -0.01235, 4, 4)]

data type:  [('x', '<f4'), ('y', '<f4'), ('z', '<f4'), ('label', '<i4'), ('id', '<i4')]

可以看到,通过这样的方式设置dtype,读取的每一行数据变成了一个tuple类型。

结合生成器使用

从NumPy的文档中可以知道,loadtxt函数的第一个参数可以是文件对象、文件名或者生成器。传入生成器有什么用呢?我们来看几个例子。

处理多个分隔符

假如我们的文件内容是这样的,每一行数据有3个分隔符",","/"和"-":

9.87,1.82,1.63,1/11-1
9.94,7.44,1.02,1/11-2
1.89,2.92,9.26,1/11-3
0.98,7.46,1.23,1/11-4

这种情况下不能通过delimiter参数设置多个分隔符,这时候就可以通过生成器来进行处理:

1

2

3

4

5

6

7

8

9

10

11

def generate_lines(file_path, delimiters=[]):

    with open("test.txt") as f:

        for line in f:

            line = line.strip()

            for d in delimiters:

                line = line.replace(d, " ")

            yield line

delimiters = [",", "/", "-"]

generator = generate_lines("test.txt", delimiters)

data = np.loadtxt(generator)

print(data)

这段代码构建了一个生成器将文件中每一行的分隔符全部替换成loadtxt函数默认的空格分隔符,然后把生成器传入loadtxt函数,这样loadtxt函数就能成功解析文件中的数据了。

输出结果:

[[ 9.87  1.82  1.63  1.   11.    1.  ]
 [ 9.94  7.44  1.02  1.   11.    2.  ]
 [ 1.89  2.92  9.26  1.   11.    3.  ]
 [ 0.98  7.46  1.23  1.   11.    4.  ]]

读取指定的行

在某些情况下,我们需要读取指定几行的数据,那么也可以通过生成器来实现。还是上面的文件内容,我们通过生成器来读取第2行和第3行:

1

2

3

4

5

6

7

8

9

10

11

12

13

def generate_lines(file_path, delimiters=[], rows=[]):

    with open("test.txt") as f:

        for i, line in enumerate(f):

            line = line.strip()

            for d in delimiters:

                line = line.replace(d, " ")

            if i in rows:

                yield line

delimiters = [",", "/", "-"]

rows = [1, 2]

generator = generate_lines("test.txt", delimiters, rows)

data = np.loadtxt(generator)

print(data)

输出结果:

[[ 9.94  7.44  1.02  1.   11.    2.  ]
 [ 1.89  2.92  9.26  1.   11.    3.  ]]

通过上面的例子可以知道,loadtxt函数结合生成器使用可以实现很多的功能。

tofile和fromfile函数

从TXT文件中读取到点云数据后,我想把数据保存到二进制文件中,需要怎么操作呢?NumPy的ndarray类提供了tofile函数可以非常方便地将数据保存到二进制文件中。把数据以二进制文件保存后又怎么读进来呢?NumPy还提供了一个fromfile函数用于从文本文件和二进制文件中读取数据。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

import open3d as o3d

import numpy as np

def main():

    points_data = np.loadtxt(

        "airplane_0001.txt", delimiter=",", dtype=np.float32)

    bin_file = 'airplane_0001.bin'

    points_data = points_data[:, :3]

    points_data.tofile(bin_file)

    pc = np.fromfile(bin_file, dtype=np.float32)

    pc = pc.reshape(-1, 3)

    pcd = o3d.geometry.PointCloud()

    pcd.points = o3d.utility.Vector3dVector(pc)

    o3d.visualization.draw_geometries([pcd])

if __name__ == '__main__':

    main()

在上面这段示例代码中,我从airplane_0001.txt文件中读取了点云数据,然后通过tofile函数将数据保存到二进制文件airplane_0001.bin中,再用fromfile函数从二进制文件中把点云数据读取出来用Open3D进行显示。为了前后呼应,让我们换个角度再看一眼显示效果:

airplane2

参考资料

  • numpy.org/doc/stable/…
  • likegeeks.com/numpy-loadt…

版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://juejin.cn/post/7137493318627229710
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计