广告位联系
返回顶部
分享到

PyTorch开源图像分类工具箱MMClassification介绍

python 来源:互联网 作者:佚名 发布时间:2022-09-24 12:10:50 人浏览
摘要

MMClassification是一个基于PyTorch的开源图像分类工具箱,是OpenMMLab项目的一部分,源码传送门,最新发布版本为v0.23.2,License为Apache-2.0。它支持在Windows、Linux和Mac上运行。 1.安装:使用c

MMClassification是一个基于PyTorch的开源图像分类工具箱,是OpenMMLab项目的一部分,源码传送门,最新发布版本为v0.23.2,License为Apache-2.0。它支持在Windows、Linux和Mac上运行。

1.安装:使用conda安装

(1).创建openmmlab虚拟环境:

conda create -n openmmlab python=3.8
conda activate openmmlab

(2).安装PyTorch:这里PyTorch使用1.11.0版本,CUDA使用10.2版本,此CUDA版本对PyTorch各版本都支持

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=10.2 -c pytorch

(3).安装MMCV:MMCV有两个版本,这里安装带CUDA的mmcv-full

1).mmcv-full: 完整版,包含所有的特性以及丰富的开箱即用的CUDA算子,安装此版本需要较长时间。

2).mmcv:精简版,不包含CUDA算子但包含其余所有特性和功能,类似MMCV 1.0之前的版本。

不要在同一个环境中安装两个版本,否则可能会遇到类似ModuleNotFound的错误。在安装一个版本之前,需要先卸载另一个:

pip uninstall mmcv-full
pip uninstall mmcv

注意:这里mmcv-full使用1.5.3版本。CUDA版本和PyTorch版本与安装PyTorch时保持一致

pip install mmcv-full==1.5.3 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html

(4).安装MMClassification:没有通过源码安装

pip install mmcls==0.23.2

2.测试:论文:《Very Deep Convolutional Networks for Large-Scale Image Recognition》

ImageNet数据集:是根据WordNet层次结构组织的图像数据集,ImageNet_1000_label中给出了1000类别中label对应的id值。

(1).下载模型(checkpoint):

1

2

3

4

5

6

7

8

def download_checkpoint(path, name, url):

    if os.path.isfile(path+name) == False:

        print("checkpoint(model) file does not exist, now download ...")

        subprocess.run(["wget", "-P", path, url])

path = "../../data/model/"

checkpoint = "vgg19_batch256_imagenet_20210208-e6920e4a.pth"

url = "https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_batch256_imagenet_20210208-e6920e4a.pth"

download_checkpoint(path, checkpoint, url)

(2).根据配置文件和checkpoint文件构建模型:

config = "../../src/mmclassification/configs/vgg/vgg19_8xb32_in1k.py"
model = init_model(config, path+checkpoint, device)

(3).准备测试图像:原始图像来自网络

1

2

image_path = "../../data/image/"

image_name = "6.jpg"

(4).进行推理:

1

2

3

result = inference_model(model, image)

print(mmcv.dump(result, file_format='json', indent=4))

# show_result_pyplot(model, image, result)

执行结果如下图所示:

GitHub传送门


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/fengbingchun/article/details/126570201
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计