广告位联系
返回顶部
分享到

让你Python到很爽的加速递归函数的装饰器

python 来源:互联网搜集 作者:秩名 发布时间:2019-05-26 13:16:27 人浏览
摘要

今天我们会讲到一个[装饰器] 注记:链接装饰器指Python3教程中的装饰器教程。 可以在这里快速了解什么是装饰器。 @functools.lru_cache进行函数执行结果备忘,显著提升递归函数执行时间。 示例:寻找宝藏。在一个嵌套元组tuple或列表list中寻找元素Gold Coin

今天我们会讲到一个[装饰器]

注记:链接“装饰器”指Python3教程中的装饰器教程。

可以在这里快速了解什么是装饰器。


@functools.lru_cache——进行函数执行结果备忘,显著提升递归函数执行时间。

示例:寻找宝藏。在一个嵌套元组tuple或列表list中寻找元素'Gold Coin'
 

import time
from functools import lru_cache
def find_treasure(box):
 for item in box:
  if isinstance(item, (tuple, list)):
   find_treasure(item)
  elif item == 'Gold Coin':
   print('Find the treasure!')
   return True
start = time.perf_counter()
find_treasure(('sth', 'sth', 'sth',
    ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
    ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
    'Gold Coin', ))
end = time.perf_counter()
run_time_without_cache = end - start
print('在没有Cache的情况下,运行花费了{} s。'.format(run_time_without_cache))
@lru_cache()
def find_treasure_quickly(box):
 for item in box:
  if isinstance(item, (tuple, list)):
   find_treasure(item)
  elif item == 'Gold Coin':
   print('Find the treasure!')
   return True
start = time.perf_counter()
find_treasure_quickly(('sth', 'sth', 'sth',
      ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
      ('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth'),
      'Gold Coin', ))
end = time.perf_counter()
run_time_with_cache = end - start
print('在有Cache的情况下,运行花费了{} s。'.format(run_time_with_cache))
print('有Cache比没Cache快{} s。'.format(float(run_time_without_cache-run_time_with_cache)))

最终输出
 

Find the treasure!
在没有Cache的情况下,运行花费了0.0002182829999810565 s。
Find the treasure!
在有Cache的情况下,运行花费了0.00011638000000857573 s。
有Cache比没Cache快0.00010190299997248076 s。


注记:运行这个示例时我的电脑配置如下
 

 
CPU:AMD Ryzen 5 2600
RAM:Kingston HyperX 8Gigabytes 2666


约使用7个月。

这个装饰器可以在函数运行时记录它的输入值与运行结果。当元组('Bad Coin', 'normal coin', 'fish', 'sth', 'any sth')出现第二次时,加了这个装饰器的函数find_the_treasure_quickly不会再次在递归时对这个元组进行查找,而是直接在“备忘录”中找到运行结果并返回!
 


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://www.jianshu.com/p/66e1fe314154
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计