广告位联系
返回顶部
分享到

python通过robert、sobel、Laplace算子实现图像边缘提取方法

python 来源:互联网搜集 作者:秩名 发布时间:2019-08-21 19:13:18 人浏览
摘要

实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值;矩阵数据类型进行转化

实现思路:
 

  1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值)
 

  2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值
 

  3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8
 

注意:
 

  必须对求得的卷积和的值求绝对值;矩阵数据类型进行转化。
 

完整代码:
 

import cv2
import numpy as np
  
# robert 算子[[-1,-1],[1,1]]
def robert_suanzi(img):
  r, c = img.shape
  r_sunnzi = [[-1,-1],[1,1]]
  for x in range(r):
    for y in range(c):
      if (y + 2 <= c) and (x + 2 <= r):
        imgChild = img[x:x+2, y:y+2]
        list_robert = r_sunnzi*imgChild
        img[x, y] = abs(list_robert.sum())   # 求和加绝对值
  return img
          
# # sobel算子的实现
def sobel_suanzi(img):
  r, c = img.shape
  new_image = np.zeros((r, c))
  new_imageX = np.zeros(img.shape)
  new_imageY = np.zeros(img.shape)
  s_suanziX = np.array([[-1,0,1],[-2,0,2],[-1,0,1]])   # X方向
  s_suanziY = np.array([[-1,-2,-1],[0,0,0],[1,2,1]])   
  for i in range(r-2):
    for j in range(c-2):
      new_imageX[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * s_suanziX))
      new_imageY[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * s_suanziY))
      new_image[i+1, j+1] = (new_imageX[i+1, j+1]*new_imageX[i+1,j+1] + new_imageY[i+1, j+1]*new_imageY[i+1,j+1])**0.5
  # return np.uint8(new_imageX)
  # return np.uint8(new_imageY)
  return np.uint8(new_image) # 无方向算子处理的图像
  
# Laplace算子
# 常用的Laplace算子模板 [[0,1,0],[1,-4,1],[0,1,0]]  [[1,1,1],[1,-8,1],[1,1,1]]
def Laplace_suanzi(img):
  r, c = img.shape
  new_image = np.zeros((r, c))
  L_sunnzi = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]])   
  # L_sunnzi = np.array([[1,1,1],[1,-8,1],[1,1,1]])   
  for i in range(r-2):
    for j in range(c-2):
      new_image[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * L_sunnzi))
  return np.uint8(new_image)
  
  
img = cv2.imread('1.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('image', img)
  
# # robers算子
out_robert = robert_suanzi(img)
cv2.imshow('out_robert_image', out_robert)
  
# sobel 算子
out_sobel = sobel_suanzi(img)
cv2.imshow('out_sobel_image', out_sobel)
  
# Laplace算子
out_laplace = Laplace_suanzi(img)
cv2.imshow('out_laplace_image', out_laplace)
  
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://www.cnblogs.com/zhanghaiyan/p/9902057.html
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计