在许多编程语言中(Java,COBOL,BASIC),多维数组或者矩阵是(限定各维度的大小)预先定义好的。而在Python中,其实现更简单一些。 如果需要处理更加复杂的情形,可能需要使用Python的数学模块包NumPy,链接地址: http://numpy.sourceforge.net/ 首先来看
在许多编程语言中(Java,COBOL,BASIC),多维数组或者矩阵是(限定各维度的大小)预先定义好的。而在Python中,其实现更简单一些。
在Python中,一个像这样的多维表格可以通过“序列的序列”实现。一个表格是行的序列。每一行又是独立单元格的序列。这类似于我们使用的数学记号,在数学里我们用Ai,j,而在Python里我们使用A[i][j],代表矩阵的第i行第j列。
程序的输出结果如下: [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] [[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9], [5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [7, 8, 9, 10, 11, 12]]
这个程序做了两件事:创建了一个6 × 6的全0表格。 然后使用两枚骰子的可能组合的数值填充表格。 这并非完成此功能最有效的方式,但我们通过这个简单的例子来演示几项技术。我们仔细看一下程序的前后两部分。
作为练习,读者可以试着在打印列表内容时,再打印出行和列的表头。提示一下,使用"%2d" % value字符串运算符可以打印出固定长度的数字格式。 显示索引值(Explicit Index Values) 我们接下来对骰子表格进行汇总统计,得出累计频率表。我们使用一个包含13个元素的列表(下标从0到12)表示每一个骰子值的出现频率。观察可知骰子值2在矩阵中只出现了一次,因此我们期望fq[2]的值为1。遍历矩阵中的每一个单元格,得出累计频率表。
使用下标i选出表格中的行,用下标j从行中选出一列,得到单元格c。然后用fq统计频率。 这看起来非常的数学和规范。Python提供了另外一种更简单一些的方式。 使用列表迭代器而非下标 表格是列表的列表,可以采用无下标的for循环遍历列表元素。
数学矩阵 我们使用了“显示下标”技术操作数学定义的矩阵。矩阵操作可以通过这种方式比较清晰地完成。我们在此演示矩阵加法的实现。、
运行结果: 此例中,我们创建了两个输入矩阵m1和m2,每一个都是3×4矩阵。然后使用列表推导式初始化第三个3行4列的0矩阵m3。然后我们使用i变量遍历每一行,使用j变量遍历每一列,从而计算出m1和m2的和。 相关博文:Python Multi-Dimensional Arrays or Matrices Chapter 20. Advanced Sequences 本文链接:http://bookshadow.com/weblog/2015/01/08/python-multi-dimensional-arrays-matrices/ |
2019-06-18
2019-07-04
2021-05-23
2021-05-27
2021-05-27