广告位联系
返回顶部
分享到

详解python消费kafka数据教程

python 来源:互联网搜集 作者:秩名 发布时间:2019-12-22 07:46:09 人浏览
摘要

1.安装python模块 pip install --user kafka-python==1.4.3 如果报错压缩相关的错尝试安装下面的依赖 yum install snappy-develyum install lz4-develpip install python-snappypip install lz4 2.生产者 #!/usr/bin/env python# coding : utf-8 from kafka

1.安装python模块
 

pip install --user kafka-python==1.4.3

如果报错压缩相关的错尝试安装下面的依赖
 
 
yum install snappy-devel
yum install lz4-devel
pip install python-snappy
pip install lz4

2.生产者

#!/usr/bin/env python
# coding : utf-8
 
from kafka import KafkaProducer
import json
 
def kafkaProducer():
  producer = KafkaProducer(bootstrap_servers='ip:9092',value_serializer=lambda v: json.dumps(v).encode('utf-8'))
  producer.send('world', {'key1': 'value1'})
 
if __name__ == '__main__':
  kafkaProducer()
 

2.消费者

from kafka import KafkaConsumer
from kafka.structs import TopicPartition
import time
import click
import ConfigParser
import json
import threading
import datetime
import sched
 
 
config = ConfigParser.ConfigParser()
config.read("amon.ini")
 
@click.group()
def cli():
  pass
 
@cli.command()
@click.option('--topic',type=str)
@click.option('--offset', type=click.Choice(['smallest', 'earliest', 'largest']))
@click.option("--group",type=str)
def client(topic,offset,group):
  click.echo(topic)
  consumer = KafkaConsumer(topic,
               bootstrap_servers=config.get("KAFKA", "Broker_Servers").split(","),
               group_id=group,
               auto_offset_reset=offset)
  for message in consumer:
    click.echo(message.value)
    # click.echo("%d:%d: key=%s value=%s" % (message.partition,
    #                      message.offset, message.key,
    #                      message.value))
 
if __name__ == '__main__':
  cli()

3.多线程消费

#coding:utf-8
import threading
 
import os
import sys
from kafka import KafkaConsumer, TopicPartition, OffsetAndMetadata
from collections import OrderedDict
 
 
threads = []
 
 
class MyThread(threading.Thread):
  def __init__(self, thread_name, topic, partition):
    threading.Thread.__init__(self)
    self.thread_name = thread_name
    self.partition = partition
    self.topic = topic
 
  def run(self):
    print("Starting " + self.name)
    Consumer(self.thread_name, self.topic, self.partition)
 
  def stop(self):
    sys.exit()
 
 
def Consumer(thread_name, topic, partition):
  broker_list = 'ip1:9092,ip2:9092'
 
  '''
  fetch_min_bytes(int) - 服务器为获取请求而返回的最小数据量,否则请等待
  fetch_max_wait_ms(int) - 如果没有足够的数据立即满足fetch_min_bytes给出的要求,服务器在回应提取请求之前将阻塞的最大时间量(以毫秒为单位)
  fetch_max_bytes(int) - 服务器应为获取请求返回的最大数据量。这不是绝对最大值,如果获取的第一个非空分区中的第一条消息大于此值,
              则仍将返回消息以确保消费者可以取得进展。注意:使用者并行执行对多个代理的提取,因此内存使用将取决于包含该主题分区的代理的数量。
              支持的Kafka版本> = 0.10.1.0。默认值:52428800(50 MB)。
  enable_auto_commit(bool) - 如果为True,则消费者的偏移量将在后台定期提交。默认值:True。
  max_poll_records(int) - 单次调用中返回的最大记录数poll()。默认值:500
  max_poll_interval_ms(int) - poll()使用使用者组管理时的调用之间的最大延迟 。这为消费者在获取更多记录之前可以闲置的时间量设置了上限。
                如果 poll()在此超时到期之前未调用,则认为使用者失败,并且该组将重新平衡以便将分区重新分配给另一个成员。默认300000
  '''
 
  consumer = KafkaConsumer(bootstrap_servers=broker_list,
               group_id="test000001",
               client_id=thread_name,
               enable_auto_commit=False,
               fetch_min_bytes=1024 * 1024, # 1M
               # fetch_max_bytes=1024 * 1024 * 1024 * 10,
               fetch_max_wait_ms=60000, # 30s
               request_timeout_ms=305000,
               # consumer_timeout_ms=1,
               # max_poll_records=5000,
               )
  # 设置topic partition
  tp = TopicPartition(topic, partition)
  # 分配该消费者的TopicPartition,也就是topic和partition,根据参数,每个线程消费者消费一个分区
  consumer.assign([tp])
  #获取上次消费的最大偏移量
  offset = consumer.end_offsets([tp])[tp]
  print(thread_name, tp, offset)
 
  # 设置消费的偏移量
  consumer.seek(tp, offset)
 
  print u"程序首次运行\t线程:", thread_name, u"分区:", partition, u"偏移量:", offset, u"\t开始消费..."
  num = 0 # 记录该消费者消费次数
  while True:
    msg = consumer.poll(timeout_ms=60000)
    end_offset = consumer.end_offsets([tp])[tp]
    '''可以自己记录控制消费'''
    print u'已保存的偏移量', consumer.committed(tp), u'最新偏移量,', end_offset
    if len(msg) > 0:
      print u"线程:", thread_name, u"分区:", partition, u"最大偏移量:", end_offset, u"有无数据,", len(msg)
      lines = 0
      for data in msg.values():
        for line in data:
          print line
          lines += 1
        '''
        do something
        '''
      # 线程此批次消息条数
 
      print(thread_name, "lines", lines)
      if True:
        # 可以自己保存在各topic, partition的偏移量
        # 手动提交偏移量 offsets格式:{TopicPartition:OffsetAndMetadata(offset_num,None)}
        consumer.commit(offsets={tp: (OffsetAndMetadata(end_offset, None))})
        if True == 0:
          # 系统退出?这个还没试
          os.exit()
          '''
          sys.exit()  只能退出该线程,也就是说其它两个线程正常运行,主程序不退出
          '''
      else:
        os.exit()
    else:
      print thread_name, '没有数据'
    num += 1
    print thread_name, "第", num, "次"
 
 
if __name__ == '__main__':
  try:
    t1 = MyThread("Thread-0", "test", 0)
    threads.append(t1)
    t2 = MyThread("Thread-1", "test", 1)
    threads.append(t2)
    t3 = MyThread("Thread-2", "test", 2)
    threads.append(t3)
 
    for t in threads:
      t.start()
 
    for t in threads:
      t.join()
 
    print("exit program with 0")
  except:
    print("Error: failed to run consumer program")

参考:

版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/bigdataf/article/details/82628573
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计