import math
ALPHA = 0.3
DIFF = 0.00001
def predict(theta, data):
results = []
for i in range(0, data.__len__()):
temp = 0
for j in range(1, theta.__len__()):
temp += theta[j] * data[i][j - 1]
temp = 1 / (1 + math.e ** (-1 * (temp + theta[0])))
results.append(temp)
return results
def training(training_data):
size = training_data.__len__()
dimension = training_data[0].__len__()
hxs = []
theta = []
for i in range(0, dimension):
theta.append(1)
initial = 0
for i in range(0, size):
hx = theta[0]
for j in range(1, dimension):
hx += theta[j] * training_data[i][j]
hx = 1 / (1 + math.e ** (-1 * hx))
hxs.append(hx)
initial += (-1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx)))
initial /= size
iteration = initial
initial = 0
counts = 1
while abs(iteration - initial) > DIFF:
print("第", counts, "次迭代, diff=", abs(iteration - initial))
initial = iteration
gap = 0
for j in range(0, size):
gap += (hxs[j] - training_data[j][0])
theta[0] = theta[0] - ALPHA * gap / size
for i in range(1, dimension):
gap = 0
for j in range(0, size):
gap += (hxs[j] - training_data[j][0]) * training_data[j][i]
theta[i] = theta[i] - ALPHA * gap / size
for m in range(0, size):
hx = theta[0]
for j in range(1, dimension):
hx += theta[j] * training_data[i][j]
hx = 1 / (1 + math.e ** (-1 * hx))
hxs[i] = hx
iteration += -1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx))
iteration /= size
counts += 1
print('training done,theta=', theta)
return theta
if __name__ == '__main__':
training_data = [[1, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1]]
test_data = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 1]]
theta = training(training_data)
res = predict(theta, test_data)
print(res)
|