广告位联系
返回顶部
分享到

python将两张图片生成为全景图片的方法代码

python 来源:互联网搜集 作者:秩名 发布时间:2020-03-05 12:08:16 人浏览
摘要

1、全景图片的介绍 全景图通过广角的表现手段以及绘画、相片、视频、三维模型等形式,尽可能多表现出周围的环境。360全景,即通过对专业相机捕捉整个场景的图像信息或者使用建模软件渲染过后的图片,使用软件进行图片拼合,并用专门的播放器进行播放,即将平

1、全景图片的介绍

全景图通过广角的表现手段以及绘画、相片、视频、三维模型等形式,尽可能多表现出周围的环境。360全景,即通过对专业相机捕捉整个场景的图像信息或者使用建模软件渲染过后的图片,使用软件进行图片拼合,并用专门的播放器进行播放,即将平面照片或者计算机建模图片变为360 度全观,用于虚拟现实浏览,把二维的平面图模拟成真实的三维空间,呈现给观赏者。

2、如何实现

2.1、实现原理

主要是利用sift的特征提取与匹配,

2.2、实现代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重庆交大'
__updated__ = '2019-06-14'
import numpy as np
import cv2 as cv
from PIL import Image
from matplotlib import pyplot as plt
print('cv version: ', cv.__version__)
 
def pinjie():
 top, bot, left, right = 100, 100, 0, 500
 img1 = cv.imread('G:/2018and2019two/qianrushi/wuluo1.png')
 cv.imshow("img1", img1)
 img2 = cv.imread('G:/2018and2019two/qianrushi/wuluo2.png')
 cv.imshow("img2", img2)
 srcImg = cv.copyMakeBorder(
  img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 testImg = cv.copyMakeBorder(
  img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
 img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
 sift = cv.xfeatures2d_SIFT().create()
 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(img1gray, None)
 kp2, des2 = sift.detectAndCompute(img2gray, None)
 # FLANN parameters
 FLANN_INDEX_KDTREE = 1
 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
 search_params = dict(checks=50)
 flann = cv.FlannBasedMatcher(index_params, search_params)
 matches = flann.knnMatch(des1, des2, k=2)
 
 # Need to draw only good matches, so create a mask
 matchesMask = [[0, 0] for i in range(len(matches))]
 
 good = []
 pts1 = []
 pts2 = []
 # ratio test as per Lowe's paper
 for i, (m, n) in enumerate(matches):
  if m.distance < 0.7 * n.distance:
   good.append(m)
   pts2.append(kp2[m.trainIdx].pt)
   pts1.append(kp1[m.queryIdx].pt)
   matchesMask[i] = [1, 0]
 
 draw_params = dict(matchColor=(0, 255, 0),
      singlePointColor=(255, 0, 0),
      matchesMask=matchesMask,
      flags=0)
 img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray,
        kp2, matches, None, **draw_params)
 #plt.imshow(img3, ), plt.show()
 
 rows, cols = srcImg.shape[:2]
 MIN_MATCH_COUNT = 10
 if len(good) > MIN_MATCH_COUNT:
  src_pts = np.float32(
   [kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
  dst_pts = np.float32(
   [kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
  M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
  warpImg = cv.warpPerspective(testImg, np.array(
   M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)
 
  for col in range(0, cols):
   if srcImg[:, col].any() and warpImg[:, col].any():
    left = col
    break
  for col in range(cols - 1, 0, -1):
   if srcImg[:, col].any() and warpImg[:, col].any():
    right = col
    break
 
  res = np.zeros([rows, cols, 3], np.uint8)
  for row in range(0, rows):
   for col in range(0, cols):
    if not srcImg[row, col].any():
     res[row, col] = warpImg[row, col]
    elif not warpImg[row, col].any():
     res[row, col] = srcImg[row, col]
    else:
     srcImgLen = float(abs(col - left))
     testImgLen = float(abs(col - right))
     alpha = srcImgLen / (srcImgLen + testImgLen)
     res[row, col] = np.clip(
      srcImg[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)
 
  # opencv is bgr, matplotlib is rgb
  res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
  # show the result
  plt.figure()
  plt.imshow(res)
  plt.show()
 else:
  print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
  matchesMask = None
 
if __name__ == "__main__":
 pinjie()

3、运行效果

原始的两张图:

效果图:

原始图,水杯没有处理好,导致此处效果不好。


版权声明 : 本文内容来源于互联网或用户自行发布贡献,该文观点仅代表原作者本人。本站仅提供信息存储空间服务和不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权, 违法违规的内容, 请发送邮件至2530232025#qq.cn(#换@)举报,一经查实,本站将立刻删除。
原文链接 : https://blog.csdn.net/qq_43433255/article/details/92211849
相关文章
  • Python Django教程之实现新闻应用程序

    Python Django教程之实现新闻应用程序
    Django是一个用Python编写的高级框架,它允许我们创建服务器端Web应用程序。在本文中,我们将了解如何使用Django创建新闻应用程序。 我们将
  • 书写Python代码的一种更优雅方式(推荐!)

    书写Python代码的一种更优雅方式(推荐!)
    一些比较熟悉pandas的读者朋友应该经常会使用query()、eval()、pipe()、assign()等pandas的常用方法,书写可读性很高的「链式」数据分析处理代码
  • Python灰度变换中伽马变换分析实现

    Python灰度变换中伽马变换分析实现
    1. 介绍 伽马变换主要目的是对比度拉伸,将图像灰度较低的部分进行修正 伽马变换针对的是对单个像素点的变换,也就是点对点的映射 形
  • 使用OpenCV实现迷宫解密的全过程

    使用OpenCV实现迷宫解密的全过程
    一、你能自己走出迷宫吗? 如下图所示,可以看到是一张较为复杂的迷宫图,相信也有人尝试过自己一点一点的找出口,但我们肉眼来解谜
  • Python中的数据精度问题的介绍

    Python中的数据精度问题的介绍
    一、python运算时精度问题 1.运行时精度问题 在Python中(其他语言中也存在这个问题,这是计算机采用二进制导致的),有时候由于二进制和
  • Python随机值生成的常用方法

    Python随机值生成的常用方法
    一、随机整数 1.包含上下限:[a, b] 1 2 3 4 import random #1、随机整数:包含上下限:[a, b] for i in range(10): print(random.randint(0,5),end= | ) 查看运行结
  • Python字典高级用法深入分析讲解
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python浅析多态与鸭子类型使用实例
    什么多态:同一事物有多种形态 为何要有多态=》多态会带来什么样的特性,多态性 多态性指的是可以在不考虑对象具体类型的情况下而直
  • Python字典高级用法深入分析介绍
    一、 collections 中 defaultdict 的使用 1.字典的键映射多个值 将下面的列表转成字典 l = [(a,2),(b,3),(a,1),(b,4),(a,3),(a,1),(b,3)] 一个字典就是一个键对
  • Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本

    Python淘宝或京东等秒杀抢购脚本实现(秒杀脚本
    我们的目标是秒杀淘宝或京东等的订单,这里面有几个关键点,首先需要登录淘宝或京东,其次你需要准备好订单,最后要在指定时间快速
  • 本站所有内容来源于互联网或用户自行发布,本站仅提供信息存储空间服务,不拥有版权,不承担法律责任。如有侵犯您的权益,请您联系站长处理!
  • Copyright © 2017-2022 F11.CN All Rights Reserved. F11站长开发者网 版权所有 | 苏ICP备2022031554号-1 | 51LA统计